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Abstract— For hospitalized patients with pulmonary condi-
tions, the onset of respiratory decline can occur unnoticed,
due to the absence of a way to continuously and noninvasively
monitor lung condition. Based on the relationship between lung
volume and pleural pressure, we hypothesized that the time
delay (∆t) between the start of a respiratory cycle and the
occurrence of lung sounds associated with inspiration would
correlate with lung volume. Additionally, we developed a re-
search tool, consisting of a respiration belt, digital stethoscope,
data collection system and MATLAB algorithm, to measure
this delay. We conducted a feasibility study with three healthy
individuals that involved safely manipulating lung volume,
through subject position and activity, and plotting ∆t against
volume measurements obtained via spirometry. The results
indicated that ∆t was measurable and changed with lung
volume and, therefore, has the potential to serve as a lung
condition monitoring tool.

Clinical Relevance—Developing this metric and measurement
method into a noninvasive monitoring tool would provide means
to better detect declining pulmonary function and intervene
earlier and more appropriately.

I. INTRODUCTION

Auscultation is a standard tool for monitoring and assess-
ing pulmonary condition. While it provides the experienced
clinician with rich insights into respiratory mechanics, it is
highly qualitative, dependent upon training and experience,
and provides only discrete pictures of a patient’s lung health
[1], such that changes may not be detected in a timely
manner. Patients receiving intensive or intermediate care
would benefit from frequent monitoring to detect improve-
ments or the onset of a reduction in lung capacity, enabling
earlier, more effective interventions. Patients suffering from
reversible changes in lung compliance, such as pulmonary
edema [2], would also benefit from a reliable means to detect
condition and assess the effectiveness of interventions, which
can be as simple as ambulation or the administration of
diuretics [2].
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Spirometry, as an adjunct to auscultation, is also discrete,
requires active patient participation and, unless filters are
fitted, aerosolizes particles, which is a significant concern
with infectious lung conditions. Some technologies, such as
the StethoMe® smart stethoscope [3] and the Respira Labs’
Sylvee [4], attempt to provide continuous and quantitative
evaluation tools, however they lack the basis of using tra-
ditional passive auscultation to aid physicians in detecting
respiratory deterioration. A key need is a single quantitative
lung condition metric, equivalent to heart rate or blood
oxygen saturation, which can be measured non-invasively
and continuously, to provide information on trends in a
patient’s condition.

Our potential metric for lung condition was inspired by
the clinical practice of observing the temporal relationship
between the onset of inspiration and detection of respiratory
sounds. Because early respiratory sounds are empirically
linked to lung volumes—likely reflecting how the lungs
store and dissipate energy during the respiratory cycle [5],
[6]—these sounds are often referred to as ”opening sounds.”
Clinical observations indicate that normal lung volumes have
a short interval between the onset of inspiration and opening
sounds, whereas underinflated lungs have a delay in opening
sounds. Rather than interpret the sounds directly, we sought
a link between the timing of these phasic sounds and lung
volume. We hypothesized that the delay (∆t), on the order of
tenths of a second, between the start of the diaphragm’s con-
traction and a subsequent burst of sound (opening sounds),
could be detected digitally and would correlate with lung
volume, defined by tidal volume. Testing this hypothesis
required developing an apparatus and algorithm to capture
and evaluate ∆t.

II. METHODS

A. Study Summary

This study’s objective was to investigate the existence
and measurability of ∆t and its potential as an indicator
of pulmonary function, as a proxy for tidal volume (TV).
We identified and integrated off-the-shelf sensors to capture
audio and the onset of respiratory cycles, over periods on the
order of a minute. This would allow averaging to minimize
the impact of transient fluctuations. In parallel, we developed
a signal processing algorithm to measure ∆t. With this
hardware and software, we executed a protocol that used
physical position and activity to safely change subjects’ tidal
volume, while measuring ∆t and conducting spirometry to
directly measure TV. Three team members served as subjects
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Fig. 1: Experimental Setup. The respiration belt and stethoscope
are used to acquire the ∆t. The spirometer and EKG sensor
are used to verify subject condition. A LabVIEW program was
developed to acquire the output signals from these sensors, verify
synchronization, and write the data to a CSV file.

for the purposes of investigating feasibility, as a precursor to
a formal study. (MIT IRB protocol 2107000447.)

B. Sensing Hardware

The sensors used in the experiments are described in the
following and their placements are shown in Figure 1.

Respiration Belt: A Vernier Go Direct® Respiration Belt
(Beaverton, OR) was chosen as a validated method to mea-
sure respiration. Other methods based on electromyography
or accelerometer are noisy and sensitive to placement and
will be considered in future work. The belt integrates a force
sensor (120Ω strain gauge) and an adjustable nylon strap
placed around the subject’s diaphragm to measure respiration
effort and respiration rate. The sensor has a force range from
0 to 50 N and a force resolution of 0.01 N. When connected
via USB to a computer, it has a response time of 50 ms and
a sampling rate of 20 Hz.

Digital Stethoscope: The Thinklabs One digital stetho-
scope (Centennial, CO) utilizes a patented capacitive sensing
technology, which enables high-quality signal acquisition,
amplifies the signal and optionally filters it with five preset
filters. The 100 - 1000 Hz bandpass filter was selected, as it is
effective for capturing normal lung sounds, while blocking
lower frequencies and vibrations [7]. Further filtering was
conducted by the algorithm. The stethoscope’s 3.5 mm jack
was used to connect it to the data acquisition (DAQ) system.
The stethoscope was positioned in the ninth intercostal space,
avoiding muscular tissue, to reliably capture lung opening
sounds and held against the subject’s back at a near constant
pressure with an elastic garment.

Fig. 2: Experimental positions including: fetal (left), standing (cen-
ter), and running (right) positions. The stethoscope and respiration
belt are located superiorly and inferiorly, respectively.

Digital Spirometer: Vernier’s SPR-BTA Spirometer mea-
sures forced expiratory volume, forced vital capacity, and
tidal volume. It was also used to validate the respiratory
timing, identified in the respiration belt signal. The spirom-
eter flow rate range is ±10 L/s and has a nominal output
of 128 mV/L/s. SparkFun’s Vernier Interface Shield was
used to connect the spirometer’s analog voltage output to
the DAQ.This was operated in handheld mode.

Electrocardiogram (EKG) Sensor: Vernier’s EKG Sensor
is a three-electrode system that measures cardiac electrical
potential waveforms and determines heart rate by examining
the number of QRS waveforms over a period of time.
The sensor has a gain of 1mV body potential/1 V sensor
output with an offset of approximately 1V (±.3V) [8]. This
communicated to the PC via USB. The electrodes were
affixed to the subject’s arms as shown in Figure 1.

Data Collection and Synchronization: A National Instru-
ments (NI) USB-6343 Multifunction I/O board was used to
digitize the audio and spirometer signals. For this experi-
ment, the sampling rate was set at 30 kSamples/sec and
a voltage range of ±10V. The NI board, respiration belt,
and EKG communicated via USB with a PC running a
LabVIEW. This set the acquisition rates, executing parallel
data processing operations, logged each signal in a CSV
format file, and verified the synchronization of the sensor
data. A high-level diagram of the sensor connections is
shown in Figure 1.

C. Experimental Procedure

The stethoscope, respiratory belt and EKG were fitted
to each subject who was then asked to, in turn, assume
a baseline standing position, assume a fetal position and
then run in place, as shown in Figure 2. Each state was
maintained for approximately 30 seconds, with the subject’s
heart rate monitored to verify that cardio-thoracic stability.
(For the running condition a heart rate of > 100 beats per
minute was acceptable.) Once stable, the belt and stethoscope
were sampled for 30 seconds and this measurement was
repeated 4 times. Subsequently, the subject was instructed
to breathe normally through a spirometer, while pinching
their nasal airway closed, and their tidal volume recorded.
We expected that comparing running to standing to the fetal
position would evidence a natural decrease in lung volume
and an increase in ∆t.
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Fig. 3: Left: Block diagram of Signal processing used to determine the time delay (∆t) from time of inspiration (ti) and the time of lung
opening (tl). Right: Force signal showing minima and audio signals showing points of sharpest increase, between which ∆t is measured.

D. Signal Processing

The MATLAB script is represented with a block diagram
in Figure 3 at left and sample signals shown at right. At a
high level, for each breath cycle the code identifies the time
of inspiration (ti) from the force signal, envelopes the audio
signal and finds the onset of lung opening sounds (te) and
calculates the delay. These values are then averaged over the
sample to report ∆t.

The onset of respiration was defined as the time ti at which
the minimum force (F ) was exerted on the belt. This is the
moment just before respiration begins. To classify a single
minima per breath cycle, a local minima finder was used
with a window of 0.75Fs,b Lb, where Fs,b is the sampling
frequency of the respiration belt and Lb is the average breath
length. Lb was calculated from the average length of time
between the peaks in F .

The onset of lung opening sound was defined as the time
te of sharpest increase of the audio signal. First the audio
signal Sa was further filtered using a 50 - 400 Hz bandpass
filter, to isolate the lung sounds and remove large spikes
of noise. Then envelope detection was then used on Sa to
generate an envelope (e).The points of greatest slope were
identified by taking a moving mean of the derivative of
the envelope (Mde), using a window of Fs,a

2 , where Fs,a

is the sampling frequency of the audio signal.The peaks of
Mde corresponded to the points of sharpest increase or te.
Multiple te were occasionally identified in a single breath
cycle, for both inspiration and expiration sounds. The lung
opening sounds (tl) were isolated by selecting the te closest
to the ti.

The ∆t is calculated as tl − ti. For the 30 second
sample shown in Figure 3, approximately 13 ∆t values were
calculated, corresponding to the number of breaths taken by
the subject. A sample with these ∆t values, the average ∆t,
and the ∆t ±2 standard deviations can be seen in Figure 4.

III. RESULTS

The ∆t values from each of the four 30-second tests were
averaged and compared across the three subjects and three
experimental conditions. Due to noise within the acoustic
signal and variance within the time delay algorithm, the
outliers in each 30 second sample were removed using the

median method within the rmoutliers function in MATLAB.
Figure 5 presents the average tidal volumes measured with
the spirometer and the average ∆t values for the standing,
fetal, and running conditions for each subject.

A trend between the various subject conditions can be seen
in Figure 5. The standing condition was selected as a baseline
lung volume for the subject, and the fetal and running
conditions correlate with a decreased and an increased lung
volume state, respectively. The overall trend shows decreas-
ing lung volume resulting in an increasing ∆t. Although the
∆t values between the baseline and decreased lung volume
states vary minimally, there is a distinct deviation for the
increased lung volume state from the baseline. Performing
a paired t-test for the fetal and running conditions with the
standing condition as the baseline corroborates the visual dif-
ferences in Figure 5. Using a p-value of 0.05, the difference
between the two conditions’ means is statistically significant
for the comparison between standing and running, as shown
in Table I. The resulting p-values for the comparison between
standing and fetal fall above .05, and thus are not statistically
significant.

IV. DISCUSSION

The statistically significant decrease of ∆t values from
the baseline lung volume state to the increased lung volume
state provides preliminary validation of the experimental
hypothesis. The statistically insignificant comparison of ∆t

Fig. 4: The time delay, ∆t (black diamond), for each breath in a
30 second experimental sample from the study. For each sample,
the average ∆t (solid line) and ∆t ±2 standard deviation (dashed
lines) were found. The data points for this sample fall within 2
standard deviations of the mean, indicating a narrow distribution.
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TABLE I: P-values from paired t-tests between Standing and
Fetal/Running conditions for all subjects

Comparison with Standing p-value

Subject 1 - Fetal 0.71

Subject 1 - Running 0.0022

Subject 2 - Fetal 0.39

Subject 2 - Running 0.045

Subject 3 - Fetal 0.11

Subject 3 - Running 6.2e-04

between the baseline and the decreased lung volume state is
mainly attributed to the difficulty of reproducing a contracted
lung volume within healthy subjects. Healthy lungs are
more resilient to deflation than non-compliant diseased lungs,
so the duration of the conducted fetal position tests may
not have been adequate to mimic an unhealthy lung state
and generate a change in ∆t. A better way to achieve
measurements at low TVs in healthy patients would be to
gather data shortly after a subject wakes up from non-REM
sleep, when volumes have been shown to be lower [9].

The variation of ∆t within the baseline state was substan-
tially greater than in the other two states, as shown by the
error bars in Figure 5. We believe this is due to the more
controlled nature of the fetal and running experimental tests,
which forced the lungs to contract and expand, respectively,
and encouraged a more regulated breathing pattern. The
standing condition allowed subjects greater freedom to vary
their breathing patterns, thus generating larger fluctuations.

The current algorithim was developed based on evaluating
healthy lung biosignals in a controlled setting. Future devel-
opment will need to consider the biosignals produced by

Fig. 5: Average time delay ∆t plotted against average tidal volume
for three healthy subjects and three subject conditions, as shown in
(a)-(c). Four samples were collected for each subject condition. A
comparison across subjects is shown in (d). The error bars represent
one standard deviation from average ∆t for each 30 second sample.

unhealthy lungs, including sounds of different frequencies
and amplitudes, such as crackles or asthmatic wheezes.
Additionally, external acoustic noises such as talking or
coughing that can take place in a hospital setting will need
to be considered. To this end, a protocol is being submitted
to Brigham and Women’s Hospital’s IRB.

V. CONCLUSION
While this feasibility study comprised only a small number

of healthy patients, the initial results are promising, indicat-
ing that ∆t exists and that it changes with TV, as demon-
strated by the difference between measurements conducted
during and outside of physical activity. The sensing method
is noninvasive and provides a quantitative basis to monitor
lung condition over a period of time.

This method not only provides a baseline for future
research, but with improvements, it has long-term potential
to develop into an important tool in the clinical setting that
provides an objective, quantitative metric for monitoring and
assessing patients with restrictive respiratory conditions.

Near-term work includes hardware improvements to inte-
grate all of the signals through one DAQ, which will improve
signal synchronization, and a study with a larger data set of
healthy patients to better understand respiratory mechanics,
followed by testing on subjects with impaired lungs, to assess
the utility of our developed method to monitor disease-
induced changes. An open question, to be answered with
a larger data set, is whether ∆t provides a general indicator
of TV or must always be baselined to a specific patient.

Longer term, the device would benefit from reduction to
a wearable form factor which would reduce the risk of cross
contamination and enable true continuous and remote patient
monitoring.

REFERENCES

[1] H. Hafke-Dys, A. Breborowicz, P. Kleka, J. Kociński, and
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